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Abstract

This papers develops a general method for ac-
quiring domain knowledge for planning by ex-
perimenting with their environment. When the
expectations suggested by the domain knowledge
and the observations differ, there is need and op-
portunity for learning. Since there are usually
several possible ways to correct the domain, the
system must experiment to gather additional in-
formation. This paper describes how 10 exploit
the characteristics of planning domains in order to
search the space of plausible hypotheses without
the need for additional background knowledge
to build causal explanations. Common features
of planning domains are used in our system as
heuristics to identify the most plausible hypothe-
ses and avoid costly experiments. This work has
been implemented in the PRODIGY planning ar-
chitecture.

1 INTRODUCTION

Research on knowledge acquisition has lead to many meth-
ods for the acquisition of knowledge under different prob-
lem solving paradigms that include diagnosis and constraint
satisfaction (Marcus, 1990). None of the current knowledge
acquisition systems are designed for planning domains nor
do they emphasize full automation. Planning systems offer
the possibility of direct interaction with the environment,
allowing autonomous learning. The best tool for the au-
tonomous acquisition of a good domain model is the inter-
action with the external system being modeled (also called
environment, or external world). Perceiving the result of
the execution of actions in the environment allows the con-
trast of expectations given by the model and real results of
the actions. When there is adifference between the expecta-
tions and the observations, there is opportunity for learning.
The model must be corrected to avoid wrong expectations
in the future. If several corrections to the model are pos-
sible, experimentation is needed to determine the adequate
corrections.

Experiments must be designed appropriately to test hy-
potheses. This design process is complex, but it must be
done efficiently. It must evaluate many parameters includ-
ing the resources used in the experiment and the significance
of the changes that the experiment produces in the exter-
nal system. For these and other reasons, minimizing the
amount of experiments is crucial. To do so, a system must
be able to calibrate a set of hypotheses and determine which
are the most plausible ones.

Much of the research on experimentation relies on some
type of background knowledge that can be used to build
causal explanations for each hypothesis (Rajamoney, 1988;
Kedar et al., 1991). They create an additional problem:
the acquisition of that background knowledge. The frame-
work for experimentation presented in this paper does not
require domain-dependent background knowledge beyond
the initial planning operators. It relies in the common char-
acteristics that seem to be present in planning applications.
Each application is a model designed for building plans to
transform the state of the environment. The actions avail-
able in the model are related in different ways. For example,
some actions reverse the changes that other actions do. Ad-
ditionally, in planning domains actions can be isolated and
identified along with their conditions and effects.

We have identified a set of heuristics to calibrate the
relevance of hypotheses. These heuristics exploit char-
acteristics of planning tasks, and include the locality of
the actions, the structural regularity of domains, and the
power of generalization of experience. We have aug-
mented the PRODIGY planner (Minton et al., 1989,
Carbonell er al., 1990) with experimentation capabilities
that implement the ideas presented in this paper. The op-
erators in PRODIGY represent actions. When an operator
can be applied in the internal state, its preconditions are ob-
served in the environment. If the observations agree with
the internal state, the action that corresponds to the operator
is executed. If the effects of the operator are observed to be
true then the execution succeeded. Otherwise, our system
considers it an execution failure and uses experimentation
techniques to correct the model of the action represented by
the operator. We assume deterministic actions whose ef-
fects can be immediately observed, noise-free sensors, and




(GRIND
(parameters
(<machine> <tool> <holding-device> <part> <side>))
(preconditions (and
(is-a <machine> GRINDER)
(is-a <tool> GRINDING-WHEEL)
(holding-tool <machine> <t001>)
{(side-up-for-machining <dim> <side>)

(holding <machine> <holding-device> <part> <side>)))

(effects (
(add (size-of <part> <dim> <value>)))))

Figure 1: An Incomplete Model of Grinding

that no other agents can affect the environment.

The paper is organized as follows. We begin by review-
ing briefly our method for learning new preconditions of
operators. Our system uses this method to find a set of
hypotheses that contain a new precondition that must be
satisfied in order to avoid future failures. The following
Section describes several domain-independent heuristics
for discriminating among this sct of hypotheses and find
the most plausible ones. Then, we review the related work
and finish with the conclusions.

2 LEARNING BY EXPERIMENTATION
IN PLANNING

Consider the operator in Figure 1, taken from a domain for
machining metal parts (Gil, 1991). It models the process
of grinding a metallic surface. A grinder holds a part with
some holding device, and, using a grinding wheel as a
tool, it changes the size of the part along some dimension.
This representation of grinding may seem correct, but it is
missing many important facts. For example, grinding with
a wheel of coarse grit produces a rough surface finish while
a wheel of fine grit produces a smoother finish. Also, the
grinder must have cutting fluid that it consumes in every
operation, and grinding cannot be used for reducing the
diameter of a part. After grinding, the part is no longer
clean and it has metal burrs, and both the old surface finish
and size are no longer valid.

We have used the Operator Refinement Method described in
(Carbonel! and Gil, 1990) to learn the missing preconditions
and effects of GRIND. In essence, a new precondition can
be learned when an action that succeeded before fails. The
cause of the failure is typically that some unknown con-
dition, required for correct performance, happened to be
true earlier and is not true now. This condition can be any
of the differences between the state in which a successful
execution was possible and the state that lead to the failure.
If there is only one difference, then it is added to the pre-
conditions of the operator and a confirmation experiment
is performed. If there are several predicates in the set of
differences, experimentation is needed to find the relevant

condition for the failure.

Here is a typical set obtained by our system. In this case,
GRIND(grinder1, wheell, visel, part7, TOP) is successful
but GRIND(grinder1, wheell, visel, part3, TOP) fails:!

(size-of part7 WIDTH 3)

(size-of part7 LENGTH 7)
(size-of part7 HEIGHT 2.5)
(material-of part7 BRASS)
(has-fluid grinder1)
(surface-finish part26 TOP SAWCUT)
(holding drilll vise2 part26 TOP)
(material-of part26 STEEL)

(is-a drilll DRILL)

(is-a drill-bit1 DRILL-BIT)
(material-of part37 COPPER)
(has-hole part37 TOP)

The problem can now be specified as follows:

Given: an operator Ojncomplete—prec and

a set of predicates {Pcandidates }i

which of the predicates causes a successful
execution of O missing—prec

Find:

The experiments consist on executing the action in states
where different subsets Of {Piandidates}i are true (we will
come back to this in a moment). Each experiment is de-
signed according with the following requirements:

® Eoperator: Oiru:om.plelz—prec-

o E rent—siae: State the system is currently in.

¢ Eoxper—siae: Any state that matches all the precondi-
tions of the operator, plus an additional set of predi-
cates {P}currenr— didates € {Pc didat, }i-

o E,p.rve: Predicates to observe before and after the
execution of the action that corresponds (0 Eoperator-

In the absence of any criteria to discern which of the dif-
ferences might be a more relevant cause for the failure, one
strategy to follow is to do a binary search through through
the set {Pcandidates}i- A binary search through a set of n
predicates requires log(n) experiments.

Each experiment requires building a plan to set the environ-
ment in a state as specified by E.xper—swaee. The execution
of the plan may use up valuable resources, produce non-
desirable changes the environment that are hard to undo, or
to interfere with the main goals of the system’s task. For
all these reasons, it is important to minimize the number of
experiments. If any information is available to determine
a smaller subset of {Pcandidates}i as relevant, the number
of experiments may be greatly reduced. The next Section
shows some domain-independent heuristics that guide this
experimentation process doing precisely this.

'We omit the states in which the successful and the failed
execution happened. The set of differences is formed by taking
into account the bindings in each situation.




3 FINDING RELEVANT CONDITIONS
FOR FAILURE

This Section presents different ways to exploit knowledge
about the planning task to evaluate which predicates in a
set of differences are more likely to have caused the failure.
Qur task is to identify a new precondition for an operator.

3.1 LOCALITY OF ACTIONS

A good heuristic to consider is the locality of actions. The
preconditions and effects of actions are concentrated lo-
cally, affecting usually the objects under direct influence of
the action. In our example we are grinding part7. The fact
that this part is made of BRASS may be relevant for the
failure obtained. However, it is probably not important that
part37 is made of COPPEK. This means that we can select
the predicates in the set related to objects that the operator
GRIND refers to directly.

This locality heuristic is implemented considering only the
predicates in the state that contain some of the objects in-
cluded in the bindings of the parameters of the operator.
In our example, if we extract the predicates that include
any of {grinder1, wheell, visel, part7, TOP} we obtain the
following subset:

(size-of part7 WIDTH 3)

(size-of part7 LENGTH 7)

(size-of part7 HEIGHT 2.5)
(material-of part7 BRASS)

(has-fluid grinderl)

(surface-finish part26 TOP SAWCUT)
(has-hole part37 TOP)

(holding drilll vise2 part37 TOP)

Notice that with this heuristic we elliminated from the list
many predicates that were in fact irrelevant for grinding.
For example, many facts about parts that are not the part
being ground have disappeared.

This heuristic is not helpful when the set of variables that
appear in an operator is incomplete. If the operator for
grinding were missing any predicates that have to do with
the tool being used, the system would never learn that the
tool is important for the action. A possible way around this
problem is to give some structured knowledge to the state.
For example, to have information in the state about where
everything is, and what things are close to each other. In this
work, we avoid this kind of approach because it requires
adding to the system knowledge that is not strictly required
for planning.

Another problem is that this heuristic does not always pro-
pose relevant differences. Consider the subset of differ-
ences just obtained. Because grinding is being done to
part7, all the facts about part7 could be relevant. But since
the TOP is the side being ground, any facts that have to do
with TOP are also considered relevant. This includes for
example the fact that part37 has a hole on the TOP, which

is not relevant to the application of the operator.

3.2 GENERALIZATION OF EXPERIENCE

A very helpful strategy is generalization of experience.
Generalizing successful situations tells us what predicates
appear in all success states. This summary of past experi-
ence helps us to locate relevant causes of failures.

This heuristic is implemented generalising successful situ-
ations through the bindings of the operator. This will give
us the set of predicates that have appeared in all of them.
After removing from that set the predicates that correspond
to the preconditions of the operator, we obtain the following
set (variables are shown between angle brackets):

(material-of <part> BRASS)
(surface-finish <part> <side> SAWCUT)
(has-fluid <grinder>)

Notice that this set is much smaller than the one in the
previous Section, where we only considered a single success
situation. When the system encounters more successful
situations, then the set of differences becomes smaller.

If the system has no previous experience with the applica-
tion of the operator this generalization strategy is not help-
ful. Another reason for the failure of this strategy is when
not much generalization can be extracted from successful
applications.

A generalization of all the possible situations where grind-
ing is successfully applied is exactly the correct precondi-
tion expression sought. The preconditions of an operator
can be seen as a concept that expresses the class of states
in which the operator is applicable. Thus, learning the pre-
condition expression of an operator is a problem of concept
learning. The initial precondition expression of an operator
is the initial description of the concept. Each successful
execution of an action is a positive example of the concept,
and each failure a negative example. Experimentation is an
additional source of examples, and it provides the learner
with the ability to design instances and direct the learning.

However, this concept learning is simpler due to common
simplifying characteristics of planning tasks. There are no
misclassified examples. The effects of actions can be ob-
served immediately after execution. The observations are
collected through noise-free sensors. Under these assump-
tions, our classification of execution success and failure
never produces noisy data. As far as the language used for
expressing the concepts, the large majority of the precondi-
tion expressions in operators are conjunctions of predicates
(or negations of predicates). This is because actions are
easier to express in their effects under different conditions
are described in separate operators. Disjunctions can be
(and are) expressed explicitly in different operators. In this
sense, limiting learning to conjunctive expressions is still
useful.




3.3 THE STRUCTURE OF DOMAIN
KNOWLEDGE

Operators for a single task are often closely related to one
another. Some operators are inverses, i.¢., they undo each
other’s effects. Some operators have similar effects, but
are applied under different conditions. Both of these rela-
tions appear in the machining domain. There are operators
for holding a part with a certain holding device, and there
are operators to release the part from the device. There
are operators for holding a tool in a machine, and opera-
tors for releasing tools from machines. The operators for
drilling are all similar to one another. So are the operators
for polishing surfaces. These relations of similarity and
reversibility constitute the heuristic of structural regularity
of the domain. :

Structural similarity will help us identify what hypotheses
are more plausible by looking at similar operators to the
operator being considered. This is a very general idea, and
it can be used for learning new preconditions, as described
next.

One way to implement this heuristic is to organize the op-
erators in a hierarchy, so that similar operators can be easily
located. The hierarchy can be built through the precondi-
tions and effects of operators. In our machining domain,
part of the hierarchy that includes the grinding operation is
as follows:

change-surface-finish

reduce-size
polish grind face-mill rough-turn
side-mill finish-turn

Consider the set of differences obtained in the precious
Section. as possible candidates for a new precondition of
grinding. Many other operators change the size of a part.
Many of them require the use of cutting fluid, which is
in fact the relevant condition for this particular failure.?
Only some of them have conditions about the material of
the part. And none of them has any conditions about the
surface finish of a side of the part. The heuristic suggests
that the differences should be considered in the following
order:

1. (has-fluid <grinder>)
2. (material-of <part> BRASS)
3. (surface-finish <part> <side> SAWCUT)

This heuristic is not very helpful if there are no similar

2Cutting fluids cool both the cutting edges of the tool and the
part, aid in chip clearance, and improve the surface finish. Notice
how much background information would be needed to explain
that the presence of cutting fluid is important for grinding.

operators or if there are similar operators but they are also
incomplete.

4 RELATED WORK

LEX (Mitchell et al., 1983) is a system designed to learn
by experimentation in a planning task. LEX uses version
spaces to represent control rules. Its experiments are based
in introspection, not interaction from the environment. This
is why it can only learn control knowledge. The rules that
it learns describe how to guide the search and are heuris-
tics that recommend which operators to apply under what
situations. Unlike our system, LEX never learns new do-
main knowledge. Many other systems (e.g., (Allen and
Langley, 1990)) that modify the specifications of their op-
erators cannot interact with the environment, just like LEX.
In fact, they are learning better ways of applying known
rules. Consequently, they are all learning a more effective
way of expressing the knowledge that the system already
has. In other words, they are symbol level learning systems
while our system exhibits learning at the knowledge level
(Dietterich, 1986).

LIVE (Shen, 1989) is a system that acquires domain knowl-
edge from the environment. This system is designed for
exploration and discovery. It can learn new operators and
formulate new terms if the language is inadequate. Its ex-
perimentation capabilities are more limited than the ones
presented in this paper. Our work is not so concerned with
exploration, bat it is more focused on what is required for
the system in order to plan.

Another system that learns from the environment is Robo-
Soar (Laird et al., 1990). This system uses outside guidance
to refine incomplete and incorrect domain knowledge. Soar
is connected toareal environment viarobotics systems. Our
system learns without human guidance, although it is not
connected to a real environment. (Maes and Brooks, 1990)
describes an algorithm for learning in a behavior-based ar-
chitecture implemented in a robotic system. The algorithm
incrementally changes the preconditions of behsaviors on
the basis of positive and negative feedback from the envi-
ronment. The architecture in our system is very different
from this one, as well as the expressions to be learned.

Failures are very useful for learning. Most of the systems
that learn from failures do so by building causal explana-
tions using some type of background knowledge. Kedar
et al. [1991] present an approach to building explana-
tions for operator failures using a set of domain constraints.
Rajamoney [1988] describes a system that learns precondi-
tions of processes. The system uses qualitative reasoning
and explanation-based learning for explaining the failures.
Salzberg [1985] describes some heuristics for designing hy-
potheses when a failure occurs. The heuristics are applied
to nondeterministic systems (results of horse races), and
causal knowledge is used to calibrate the hypotheses.

Scientific discovery is naturally related to the subject of
experimentation. Many programs have been built for for-



mulating theories by experimentation {Langley et al., 1987;
Kulkarni, 1988). Experimentation to understand scien-
tific phenomena requires a great deal of domain specific
knowledge. The system described in this paper presents a
more pragmatic approach to experimentation, and relies on
knowledge-independent heuristics.

S CONCLUSIONS

We have described several heuristics for proposing relevant
conditions for failure based exclusively on the knowledge
given to a planner. No additional background knowledge is
needed to recover from the failures. The heuristics include
locality of actions, structural regularity, and generalization
of experience. They are very different in nature and use-
ful in different cases, but they can be combined to guide
the experimentation process. We have found them helpful
for many different planning domains. Work is under way
to measure the number of experiments performed by the
system using these heuristics and compare them with an
optimal experimentation strategy.

Our system can currently learn preconditions of operators
when they are conjunctive expressions of predicates that
are directly observable in the state. Much work remains
1o be done, mainly about generalization through an object
type hierarchy, learning negations of predicates, and the
detection of disjunctions and other functional constructors.
In particular, learning negations of predicates presents in-
teresting problems because of the closed-world assumption
made in planning representations.

Experimentation is a very powerful tool for the autonomous
acquisition of knowledge for planning systems. The impact
of this work should be felt in robotic and other autonomous
planning tasks.
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